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Abstract. Simulation of laser wakefield accelerator (LWFA) experiments is computationally inten-
sive due to the disparate length scales involved. Current experiments extend hundreds of laser wave-
lengths transversely and many thousands in the propagation direction, making explicit PIC simula-
tions enormously expensive and requiring massively parallel execution in 3D. We can substantially
improve the performance of laser wakefield simulations by modeling the envelope modulation of
the laser field rather than the field itself. This allows for much coarser grids, since we need only
resolve the plasma wavelength and not the laser wavelength, and therefore larger timesteps. Thus
an envelope model can result in savings of several orders of magnitude in computational resources.
By propagating the laser envelope in a frame moving at the speed of light, dispersive errors can
be avoided and simulations over long distances become possible. Here we describe the model and
its implementation, and show simulations and benchmarking of laser wakefield phenomena such as
channel propagation, self-focusing, wakefield generation, and downramp injection using the model.

INTRODUCTION

Laser-driven plasma wakefield accelerators (LWFAs) are capable of producing acceler-
ating gradients several orders of magnitude higher than conventional accelerators. Sev-
eral years ago, high-quality electron beams were produced by self-trapping and acceler-
ated to ~100MeV in a few millimeters [1, 2, 3]. More recently, acceleration to 1 GeV in
a few centimeters was demonstrated [4]. In addition, experiments have shown that the
quality of the electron beam can be improved by controlling the injection process sep-
arately from the accelerating structure [5, 6]. Having successfully proven the principle
of laser-plasma acceleration, an important goal is to extend LWFAs toward the capabili-
ties of a high-energy collider. This involves achieving ~10GeV of energy gain in single
meter-scale acceleration stages, and further optimizing the injection process to reduce
emittance.

Simulations have played a significant role in all of these developments. In particu-
lar, the particle-in-cell (PIC) method, a well-established algorithm for self-consistently
modeling charged particles in electromagnetic fields [7, 8], has been critical to the under-
standing of the LWFA process. However, future explorations present difficulties for PIC
simulations, due to the disparate length scales involved. The laser wavelength typically
used is A = 800 nm; this must be well-resolved in a PIC simulation, and because of the
Courant limit [9], the time step must then be a small fraction of a laser oscillation period.
At the same time, meter-scale acceleration stage designs use a lower plasma density for
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a longer dephasing length, and correspondingly longer laser pulses. Thus the simulation
must encompass many thousands of cells longitudinally and hundreds transversely, and
run for tens of millions of timesteps. This is intractable even in two dimensions. Also,
running PIC simulations of the injection process in 3D is expensive enough that it makes
parameter studies for beam quality optimization quite difficult. New tools are therefore
needed to perform these simulations more quickly while preserving as much as possible
of the physics modeled by PIC.

In order to overcome the disparities in length scale, an algorithm was proposed which
models not the fast laser oscillation itself, but the slowly-varying envelope modulating
the fast sinusoidal oscillation [10]. Removing the need to resolve the laser wavelength
allows for larger grid spacings and thus larger timesteps as well. The algorithm was im-
plemented in the plasma simulation code VORPAL [11] and tested in limited cases [12].
More recently, an improvement was made to the algorithm in order to resolve problems
which appeared with long propagation distances [13]. In this article, we explore this
improved algorithm using its implementation in VORPAL. First, we describe the algo-
rithm. Then we present some benchmark tests of the envelope model against explicit
PIC. Finally, we show some examples of LWFA simulations which are attainable using
the model.

DESCRIPTION OF THE ALGORITHM

As the envelope algorithm is described in detail in [10, 13, 12], we only summarize it
here. The laser envelope model consists of the electromagnetic fields and particles of
standard PIC along with a complex scalar field a which represents the envelope modu-
lating the oscillation of the transverse vector potential of the laser field. Specifically, the
transverse vector potential in the Coulomb gauge is given in terms of a by

A, (t,x) =Re [éa([,x)e"(‘”t*koﬂ] ,

where w is the angular frequency of the laser, ky = w/c is the free-space wavenumber,
and € is a constant polarization vector with |&?> = 1. The PIC electromagnetic fields then
represent only the fields due to the plasma dynamics, and not the laser field.

The envelope model update has several steps which are modified from that of standard
PIC. First, the particles are adapted to include the effects of the ponderomotive force
from the laser field. The particle model tracks the momentum p averaged over a laser
oscillation period and also the average relativistic factor which accounts for the quiver

motion
=12 242
7=\/1+ BP , ¢%laf
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where m is the particle mass and ¢ is the charge. The particle update then includes the
ponderomotive force, with the momentum equation

dp q2 2
— =qg(E+vxB)——V|a|.
dt qE+vxB) 4ym la
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Here E and B are the PIC electromagnetic fields, and the average velocity v = p/ym is
used. The numerical procedure for the paricle push is described in [10]. The electromag-
netic fields are updated and the particles deposited as in standard PIC.

The laser envelope field is updated separately from the PIC electromagnetic fields.
The envelope update is performed in a Galilean frame co-moving with the laser field at
the speed of light, with coordinates given by (r = ¢, £ = x —ct). Applying the Maxwell
equations to the laser field in the speed-of-light frame yields the approximate update

equation
20 (0
S —| = =ik |+ V2
i)

Here y is the plasma susceptibility, which is derived from the particles by

a = —Hoxa.

N\ 4P
7 vm

where ¢}, pj, and ¥; are the charge, charge density distribution, and average relativistic
factor, respectively, for the jth particle. The numerical procedure for the envelope field
update remains the same as in [12], but with the light-frame update equation substituted
for the lab-frame equation.

BENCHMARK TESTS

Linear propagation in a plasma channel. In order to test the envelope model, we
examine the case of propagation of a low-intensity laser pulse with a transverse profile
matched to a plasma channel. We know that a Gaussian laser pulse with waist parameter
wo is matched to a parabolic plasma channel with radial profile n(r) = ny + r? /ﬂrewg,
where 7, = e*/4neymc? is the classical electron radius [14]. The eigenmodes of the
channel then vary longitudinally as e, and obey the dispersion relation k* = k2 + k2,

where k = w/c for that mode and we define the parameter k; by

1
kl2 = 4(—2 +Jrren0).
Wo

The group velocity v, is then given by

Now the envelope update equation is an approximation to the Maxwell equations,
and yields the dispersion relation k = k, + kf /2k,, which gives B, = 1 - kf /2k.. We see
that both these expressions agree with the full Maxwell relations to first order in & /k,,
which should be acceptable since for long accelerator stages which employ relatively
low densities of ny ~ 102 m™, k; < k.

To test the dispersion characteristics of the envelope model, we choose parameters
deliberately to exacerbate any dispersion errors that might occur, namely, we set ny =
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FIGURE 1. Left: The centroid position of the envelope field. Right: The phase of the spatial frequency
components.

10**m= and wy = 10um, so that both the background plasma density and the narrow
channel contribute to the dispersion. We run in 3D and propagate for 1 cm, then examine
the dispersion characteristics quantitatively. The left plot in Fig. 1 shows the centroid
positions of the envelope at each timestep as well as the theoretical values from the
Maxwell and envelope group velocities. We can see the pulse walk backward in the
speed-of-light frame due to the sub-luminal group velocity. In the right plot, we use a
Fourier transform to decompose the envelope into spatial frequency components, and
compare the phases of each against the theoretical values derived from the dispersion
relations; here k', = k, — ko. In both comparisons, the Maxwell and envelope theoretical
values are nearly identical, and both agree well with the simulation results.

1D wakefield tests. The wakefield is a critical quantity for LWFA simulations. In
order to test the reliability of the wakefields produced by the envelope model, we
compare the model to explicit PIC for a set of one-dimensional simulations. We choose
to work in 1D because explicit PIC does not experience grid dispersion in that case,
which would otherwise cause a group velocity error. We set our parameters for a wide
separation in length scale: a laser RMS pulse length of 32 um, with a matched plasma
wavelength of 201 um for a density of 2.76 X 10?2m=>. For the explicit simulation,
we choose a relatively high resolution of 64 grid cells per wavelength to minimize
discretization errors [15], and for the envelope model we use 40 cells per plasma
wavelength. The results are shown in Fig. 2. We see that the envelope model differs
in amplitude by a relatively small amount, and the phase difference is a small fraction
of a plasma wavelength, even for gy = 3.0. In that case, the amplitude difference was
1.0%, and the phase difference was 120 mrad. The agreement between the envelope and
explicit simulations was much better than when the explicit simulations were run with
just 24 cells per wavelength, indicating that the envelope model does not experience the
same errors as explicit PIC.

The parameters used in these tests are comparable to those for a 20 GeV accelerating
stage with ag = 1, and the speedup gained from the envelope model is ~10*. Such a large
speedup is not unexpected, as at lower densities, the plasma wavelength and matched
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FIGURE 2. Comparisons between explicit PIC and the envelope model in 1D.

laser pulse length increase. Since these are the smallest scales that need to be resolved,
the grid spacing and timestep can both be increased as well. Speedup in 2D and 3D
is similar, since the transverse resolution in explicit PIC need not be as high as the
longitudinal resolution.

APPLICATIONS OF THE ENVELOPE MODEL

We now show examples of the application of the envelope model in the two areas
needing more efficient simulations: long-distance propagation and injection. The left
plot of Fig. 3 shows the fluence profiles of a laser field propagating in a plasma channel
relevant for a 10 GeV stage. We use a plasma density of 10**m~3 at the bottom of the
channel and ay = 1. The self-focusing oscillations are clearly visible. The simulation
propagated the laser pulse for 55cm in 360 CPU hours in 2D. The envelope model
was also used with scaled parameters (see [16]) for comparison with explicit PIC. In
those tests, good agreement was observed and a speedup factor of 18 was obtained.
The propagation distance is limited by the spectral broadening that the laser pulse
experiences as it depletes. Ultimately, the broadened pulse becomes unresolved by the
larger grid spacing that the envelope model allows.

The right plot of Fig. 3 shows the phase space of the electrons in a simulation of
downramp injection using the envelope model, obtaining similar results to [5]. This
demonstrates that the envelope model can describe particle trapping despite the reduced
representation of the laser field—a task that the more severe quasi-static approximation
does not allow.

CONCLUSION

The laser envelope model is an exciting tool for LWFA simulation. Its ability to reduce
the required computational time by removing the need to resolve the laser wavelength
allows it to reach new application areas, while still agreeing with both theory and
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FIGURE 3. Left: Transverse profiles of a laser pulse propagating in a plasma channel, showing self-
focusing oscillations. Right: Longitudinal phase space in a downramp injection simulation.

explicit PIC in simple benchmark tests. Future work includes further benchmarking
and exploration of LWFA parameter spaces for meter-scale acceleration and downramp
injection.
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